Solving linear and quadratic simultaneous equations

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations $y=x+1$ and $x^{2}+y^{2}=13$

$x^{2}+(x+1)^{2}=13$	1 Substitute $x+1$ for y into the second equation.
$x^{2}+x^{2}+x+x+1=13$	2 Expand the brackets and simplify.
$2 x^{2}+2 x+1=13$	
$2 x^{2}+2 x-12=0$	3 Factorise the quadratic equation.
$(2 x-4)(x+3)=0$	
So $x=2$ or $x=-3$	4 Work out the values of x.
Using $y=x+1$	5 To find the value of y, substitute
When $x=2, y=2+1=3$	both values of x into one of the
When $x=-3, y=-3+1=-2$	original equations.
So the solutions are $x=2, y=3 \quad \text { and } \quad x=-3, y=-2$	
Check: $\begin{aligned} \text { equation } 1: 3 & =2+1 & & \text { YES } \\ \text { and }-2 & =-3+1 & & \text { YES }\end{aligned}$	6 Substitute both pairs of values of x and y into both equations to check your answers.
$\begin{gathered} \text { equation 2: } 2^{2}+3^{2}=13 \quad \text { YES } \\ \text { and }(-3)^{2}+(-2)^{2}=13 \text { YES } \end{gathered}$	

Example 2 Solve $2 x+3 y=5$ and $2 y^{2}+x y=12$ simultaneously.

$$
\begin{aligned}
& x=\frac{5-3 y}{2} \\
& 2 y^{2}+\left(\frac{5-3 y}{2}\right) y=12 \\
& 2 y^{2}+\frac{5 y-3 y^{2}}{2}=12 \\
& 4 y^{2}+5 y-3 y^{2}=24 \\
& y^{2}+5 y-24=0 \\
& (y+8)(y-3)=0 \\
& \text { So } y=-8 \text { or } y=3
\end{aligned}
$$

Using $2 x+3 y=5$
When $y=-8, \quad 2 x+3 \times(-8)=5, \quad x=14.5$
When $y=3, \quad 2 x+3 \times 3=5, \quad x=-2$
So the solutions are $x=14.5, y=-8$ and $x=-2, y=3$

Check:
equation $1: 2 \times 14.5+3 \times(-8)=5 \quad$ YES and $2 \times(-2)+3 \times 3=5$

YES
equation $2: 2 \times(-8)^{2}+14.5 \times(-8)=12$ YES

$$
\text { and } 2 \times(3)^{2}+(-2) \times 3=12 \quad \mathrm{YES}
$$

1 Rearrange the first equation.
2 Substitute $\frac{5-3 y}{2}$ for x into the second equation. Notice how it is easier to substitute for x than for y.
3 Expand the brackets and simplify.

4 Factorise the quadratic equation.
5 Work out the values of y.
6 To find the value of x, substitute both values of y into one of the original equations.

7 Substitute both pairs of values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.

$$
1 \quad \begin{aligned}
& y=2 x+1 \\
& \\
& x^{2}+y^{2}=10
\end{aligned}
$$

$$
2 \quad \begin{aligned}
& y=6-x \\
& \\
& x^{2}+y^{2}=20
\end{aligned}
$$

$3 y=x-3$
$x^{2}+y^{2}=5$
$4 y=9-2 x$
$x^{2}+y^{2}=17$
$5 y=3 x-5$
$y=x^{2}-2 x+1$
$6 y=x-5$
$y=x^{2}-5 x-12$
$7 y=x+5$
$x^{2}+y^{2}=25$
$8 y=2 x-1$
$x^{2}+x y=24$
$9 y=2 x$
$y^{2}-x y=8$
$10 \quad 2 x+y=11$
$x y=15$

Extend

$11 x-y=1$
$x^{2}+y^{2}=3$
$12 y-x=2$
$x^{2}+x y=3$

edexcel

Answers

$1 x=1, y=3$

$$
x=-\frac{9}{5}, y=-\frac{13}{5}
$$

$2 x=2, y=4$
$x=4, y=2$
$3 x=1, y=-2$
$x=2, y=-1$
$4 \quad x=4, y=1$
$x=\frac{16}{5}, y=\frac{13}{5}$
$5 \quad x=3, y=4$
$x=2, y=1$
$6 x=7, y=2$
$x=-1, y=-6$
$7 x=0, y=5$
$x=-5, y=0$
$8 x=-\frac{8}{3}, y=-\frac{19}{3}$
$x=3, y=5$
$9 x=-2, y=-4$
$x=2, y=4$
$10 x=\frac{5}{2}, y=6$
$x=3, y=5$
$11 x=\frac{1+\sqrt{5}}{2}, y=\frac{-1+\sqrt{5}}{2}$
$x=\frac{1-\sqrt{5}}{2}, y=\frac{-1-\sqrt{5}}{2}$
$12 x=\frac{-1+\sqrt{7}}{2}, y=\frac{3+\sqrt{7}}{2}$
$x=\frac{-1-\sqrt{7}}{2}, y=\frac{3-\sqrt{7}}{2}$

